1. (20 points) Consider a hydrogen atom with the nucleus at the origin and the electron in a $|2p_z\rangle$ state.

 a. Derive an expression for the zz component of the atomic quadrupole moment. The quadrupole operator is $-Ar^2Y_2^0(\theta, \phi)$ where A is a constant. Simplify the result as much as you can (do the integrations).

 b. Derive an expression for the zz component of the electric field gradient at the nucleus. The electric field gradient operator is $\frac{B}{r^3}Y_2^0(\theta, \phi)$ where B is a constant. Simplify the result as much as you can (do the integrations).

2. (30 points) Consider the HF molecule in its ground state.

 a. How would you measure its dipole moment?

 b. How would you calculate its dipole moment?

 c. Sketch the anticipated dipole moment as a function of bond length.

3. (10 points) How would you calculate the dipole polarizability of the H atom in its ground state?

4. (20 points) Identify which of the following molecules is paramagnetic and explain your answer.

 a. O_2

 b. ON

 c. N_2

 d. HOO

 e. HNO

5. (20 points) The spin Hamiltonian for the H atom in its ground state has the form

 $\hat{H} = g_e \beta_e \hat{H}_z + g_N \beta_N \hat{H}_z + a\hat{\mathbf{\sigma}} \cdot \hat{\mathbf{S}}$

 a. Identify the terms.

 b. Calculate, to first order, the energy levels of this system.
Useful equations

\[|2p_z| = \sqrt{\frac{1}{24a_0^5} r \exp\left(-\frac{r}{2a_0}\right)} Y_0^0(\theta, \phi) \]

\[Y_1^0(\theta, \phi) Y_1^0(\theta, \phi) = \frac{1}{\sqrt{5\pi}} Y_2^0(\theta, \phi) + \frac{1}{\sqrt{4\pi}} Y_0^0(\theta, \phi) \]

\[\int_0^\infty x^N e^{-ax} dx = \frac{N!}{a^{N+1}} \]

\[\int_0^\pi \sin \theta d\theta \int_0^{2\pi} d\phi \ Y_{l_1}^{m_1}(\theta, \phi) Y_{l_2}^{m_2}(\theta, \phi) = \delta_{l_1 l_2} \delta_{m_1 m_2} \]

\[\hat{S}_x \alpha = \frac{\beta}{2} \quad ; \quad \hat{S}_x \beta = \frac{\alpha}{2} \]

\[\hat{S}_y \alpha = \frac{i\beta}{2} \quad ; \quad \hat{S}_y \beta = \frac{-i\alpha}{2} \]